Selective involvement by the medial orbitofrontal cortex in biasing risky, but not impulsive, choice.
نویسندگان
چکیده
Separate regions of the orbitofrontal cortex (OFC) have been implicated in mediating different aspects of cost-benefit decision-making in humans and animals. Anatomical and functional imaging studies indicate that the medial (mOFC) and lateral OFC may subserve dissociable functions related to reward and decision-making processes, yet the majority of studies in rodents have focused on the lateral OFC. The present study investigated the contribution of the rat mOFC to risk and delay-based decision-making, assessed with probabilistic and delay-discounting tasks. In well-trained rats, reversible inactivation of the mOFC increase a risky choice on the probabilistic discounting task, irrespective of whether the odds of obtaining a larger/risky reward decreased (100-12.5%) or increased (12.5-100%) over the course of a session. The increase in risky choice was associated with enhanced win-stay behavior, wherein rats showed an increased tendency to choose the risky option after being rewarded for the risky choice on a preceding trial. In contrast, mOFC inactivation did not alter delay discounting. These findings suggest that the mOFC plays a selective role in decisions involving reward uncertainty, mitigating the impact that larger, probabilistic rewards exert on subsequent choice behavior. This function may promote the exploration of novel options when reward contingencies change.
منابع مشابه
Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice.
Dysregulation of the prefrontal cortex (PFC) has been implicated in impulse control disorders, including attention deficit hyperactivity disorder. A growing body of evidence suggests that impulsivity is non-unitary in nature, and recent data indicate that the ventral and dorsal regions of the PFC are differentially involved in distinct aspects of impulsive behaviour, findings which may reflect ...
متن کاملChoosing delayed rewards: perspectives from learning theory, neurochemistry, and neuroanatomy
4 . DELAYED REINFORCEMENT IN CHOICE...........................................................................6 4.1 . UTILITY THEORY AS AN APPROACH TO NORMAL AND PATHOLOGICAL CHOICE IN ANIMALS..........6 4.2 . CHOICE WITHIN THE BRAIN: ‘TOP-DOWN’ AND ‘BOTTOM-UP’ APPROACHES................................8 4.3 . TEMPORAL DISCOUNTING AND IMPULSIVE CHOICE ..............................................
متن کاملLesions of the orbitofrontal but not medial prefrontal cortex disrupt conditioned reinforcement in primates.
The ventromedial prefrontal cortex (PFC) is implicated in affective and motivated behaviors. Damage to this region, which includes the orbitofrontal cortex as well as ventral sectors of medial PFC, causes profound changes in emotional and social behavior, including impairments in certain aspects of decision making. One reinforcement mechanism that may well contribute to these behaviors is condi...
متن کاملPrefrontal cortical contribution to risk-based decision making.
Damage to various regions of the prefrontal cortex (PFC) impairs decision making involving evaluations about risks and rewards. However, the specific contributions that different PFC subregions make to risk-based decision making are unclear. We investigated the effects of reversible inactivation of 4 subregions of the rat PFC (prelimbic medial PFC, orbitofrontal cortex [OFC], anterior cingulate...
متن کاملImpulsive choice induced in rats by lesions of the nucleus accumbens core.
Impulsive choice is exemplified by choosing a small or poor reward that is available immediately, in preference to a larger but delayed reward. Impulsive choice contributes to drug addiction, attention-deficit/hyperactivity disorder, mania, and personality disorders, but its neuroanatomical basis is unclear. Here, we show that selective lesions of the nucleus accumbens core induce persistent im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2014